
To BDI, or Not to BDI: Design Choices in an Agent-Based
Traffic Flow Management Simulation

Shawn R. Wolfe Maarten Sierhuis
NASA Ames Research Center RIACS/NASA Ames Research Center
Shawn.R.Wolfe@nasa.gov Maarten.Sierhuis-1@nasa.gov

Peter A. Jarvis
Perot Systems Government Services/NASA Ames Research Center

pjarvis@email.arc.nasa.gov

Abstract

Belief-Desire-Intention (BDI) is a powerful agent
paradigm that allows for the development of so-called
intelligent agents – agents that can reason and act
based on their beliefs and intentions. However, this
power often comes at the cost of increased
computational overhead. We describe our experience
using a BDI agent framework for developing a
simulation of collaborative air traffic flow
management and the efficiency problems we
encountered. By using BDI more judiciously in our
simulation, we were able to address these issues and
greatly reduce the execution time of our simulation.
From our successes and failures, we derive several
guidelines that may enable other researchers to avoid
similar efficiency issues in BDI-based simulations.

1. Introduction

The National Airspace System (NAS) of the United
States today is under the control of the Federal
Aviation Administration (FAA). Aided by their more
comprehensive situational knowledge, the FAA’s air
traffic controllers work with pilots to ensure safety in
the airspace. Though pilots of small general aviation
(GA) aircraft are often able to fly safely using visual
flight rules (VFR) and minimal controller direction,
pilots of larger commercial aircraft rely heavily on air
traffic controllers, as they have little visual warning at
the correspondingly higher flight speeds. Air traffic
flow management, then, is primarily focused on
managing these commercial flights safely through
traffic congestion, poor weather and other potential
hazards.

To make this task manageable for the controllers,
commercial aircraft generally follow structured air
traffic routes, essentially “highways in the sky”. These

air routes greatly increase the predictability and
manageability of traffic flows, but at the cost of
freedom of movement. Though not readily observable
to the naked eye, aircraft are often queued up in these
flight routes, much like cars on a busy freeway. Unlike
those cars, however, aircraft must operate within a
narrow range of flights speeds to avoid stalling or
structural damage. These operating constraints make
the traffic flow management task more challenging,
reducing the number aircraft the controllers can
manage. A forecast of air traffic demand in 2025 shows
an increase of two to three times over present day
levels [1], resulting in even greater flight delays.

The Next Generation Air Transportation System
(NGATS) project is a multi-faceted research effort to
address issues with the NAS. One such facet is the area
of Collaborative Traffic Flow Management (CTFM),
which intends to increase both the efficiency of the
NAS and the satisfaction level of the airlines. In
today’s system, the flow of traffic is primarily handled
by three entities: the FAA’s Air Traffic Control
System Command Center (ATCSCC) and, Traffic
Management Units (TMUs), and the individual
airlines' Airline Operation Centers (AOCs). Previous
field observations found that several aspects of the
current system hindered collaboration [2]. A new
concept of operations was suggested to address these
issues [3], and our goal is to evaluate this concept
through an agent-based simulation.

We begin (in Section 2) with related TFM
simulations, categorizing them within or outside of the
agent-directed simulation taxonomy. In Section 3 we
state the problem we are trying to model and simulate
(i.e. a specific traffic flow problem in the NAS), and in
Section 4 we motivate our use of the BDI agent
paradigm and characterize the simulation platform
(Brahms) used. The primary contribution follows in
the remainder of the paper, as we describe an idealized,

naïve model design that incorporates earlier flaws, and
contrast this naïve design with our later design. From
this experience, we derive general guidelines for the
use of BDI agents in large-scale simulations and
conclude with future work.

2. Related TFM Simulations

TFM involves both complex physical processes
(e.g., aerodynamics) and complex human systems
(e.g., coordinated action and distributed decision
making). An earlier focus on physics-based modeling
has lead to several excellent simulators of the first
type, and so increasingly the focus has been shifting to
the simulating the roles of people in the TFM system.
The use of the agent paradigm is growing in TFM
simulations, but the use of BDI agents in TFM has yet
to enjoy widespread adoption.

Agent-directed simulation separates the use of
agents in simulation into the category of simulation
for agents and agents for simulation [4]. In simulation
for agents, simulation techniques are used for
simulating real-world entity behavior, e.g. simulation
of cognitive behavior. Agents for simulation itself is
divided into two categories: agent-supported
simulation, the implementation of a simulation
environment with the help of agent technology; and
agent-based modeling and simulation (ABMS), using
interacting software agents modeled to generate
emergent system behavior.

Simulation for Agents of TFM: The Airspace
Concept Evaluation System (ACES) [5] is a
distributed agent simulation of the NAS. ACES is
based on the Department of Defense’s High Level
Architecture (HLA), which has enabled the integration
of several simulations into the overall system. As
ACES is focused on the entire NAS, the simulation
includes traffic flow management [6], but is not
specifically focused on TFM.

The Man-Machine Integrated Design and Analysis
System (MIDAS) [7] is another example of an agent
simulation. MIDAS is a human performance simulator
for pilots or flight controllers, focusing on the
limitations of cognitive ability more than the results of
complex decision making.

Agents for Simulation of TFM : IMPACT
(Intelligent agent-based Model for Policy Analysis and
of Collaborative Traffic flow management) uses an
ABMS approach to simulate the interaction between
simple agents in an economically based environment
[8]. In the simulation, policy-based FAA agents
evaluate and impose ground delay programs (GDP),
based on the capacity of the airspace and the weather.
Their decisions are based on simple rules about
capacity of airports and equality between airlines. The
airline agents are economically based agents and make
their decisions based on calculated cost. By imposing

specific random events at the start, the output of the
simulation are statistics based on the emergent agent
behavior in the system. The purpose of the IMPACT
simulation is very similar as the purpose of our
simulation. However, our agent approach differs in that
IMPACT models airlines and FAA as swarm-based
agents that use a simplistic decision-making
algorithm. In contrast, we use a more complex agent
model of the organization of both airlines and FAA,
using BDI agents that can reason and communicate
with other agents in the model.

Tumer and Agogino [9] use FACET (see below) to
test a multi-agent algorithm for traffic flow
management. They use a Monte-Carlo simulation to
estimate the congestion within a certain traffic
management unit (TMU) within the NAS, based on
simple agents’ actions to speed up or slow down
traffic. The agents use reinforcement learning to set the
separation between airplanes to manage congestion.

Whereas our simulation focuses on the collaborative
decision-making process between the airlines and FAA
before flights take off, Tumer and Agogino focus on
adaptive agents taking independent actions that
maximize a system evaluation function for enroute
flights. They use an ABMS approach to evaluate their
AI-algorithm. Again, agents are very simple
computational objects representing fixes in a 2D space,
and do not have any similarities with entities in the
real world (e.g. particular people in a FAA control
center).

Non-Agent Simulations of TFM: Hogan and
Wojcik [10] simulate a “day in the life” of Newark
airport. Their simulation model is not agent-based:
although their paper does not provide a description of
the model representation, it is clear that airport,
runways, routes, etc, are at most represented as
structured records or objects. Decision-makers are not
modeled in any detail.

FACET [11] [12] is a NASA-developed tool for
simulating air traffic flow. FACET contains modules
that concentrate on trajectory modeling, weather
modeling, and also contains a model of the airspace
structure, including the ARTCC regions, sectors, and
air routes. FACET can act either as a simulator or as a
playback mechanism, using either from historical data
or from a live data feed from the FAA. FACET has
been integrated into a commercial product, Flight
Explorer [13] which is used by the majority of major
U.S. airlines. FACET is not an agent-based
simulation, concentrating primarily on the physical
aspects of air traffic flow, but does include non-
physical aspects such as controller workload and air
traffic management initiatives.

3. Simulating CTFM

The CTFM concept of operations is quite complex,
requiring a multi-year effort to develop a complete
simulation. Our initial efforts focused only on a subset
of the CTFM concept of operations: the route selection
problem [14]. We also made several simplifications to
speed up the initial modeling task. In reality, each
controller controls a three-dimensional space known as
a sector, but in our model we assigned one controller
per route and did not include sectors. The controllers
themselves were modeled only as a constraint, i.e., the
number of flights that could follow a particular air
route, which we considered as a route capacity. The
designs presented in this paper do not include persons
or roles within an organization, as our BDI agents
correspond to the organizational level. Therefore, an
AOC or TMU is modeled as a single agent rather than
a more complex set of cooperating “people” agents. A
more complex model that captures individual roles is
currently under development but falls outside of the
scope of this paper.

We created several simple traffic scenarios with
varying levels of traffic. All scenarios used traffic
between seven airports, three airlines, and controlled
by only one TMU. This meant that we had only one
TMU agent and three AOC agents, and that we did not
need to model TMU to TMU interactions. Three air
routes were created between each airport pair: a primary
route, preferred by all airlines, and two less desirable
secondary routes. Though the capacity on the primary
route was not always enough for all scheduled traffic,
there was enough capacity amongst the three routes to
accommodate all scheduled traffic. Our goal was to
measure how effectively routes were assigned to flights
by either the TMU or the AOC.

We created several variants of the simulation to
provide points for comparison. In the first variant, the
TMU chose all routes for all flights without input
from the AOC or concern for the relative value of each
flight: this simulation roughly corresponds to current
operations. In the second variant, the TMU again chose
routes for all flights, but would use the value of the
flight and a greedy algorithm to reach a globally
optimal solution: this simulation captured the best
performance possible, according to our metric. In the
third variant, the AOCs would choose routes
themselves in an iterative process, with the TMU
evaluating the global solution and notifying the AOCs
of any constraint violations. This variant most closely
corresponded to the CTFM concept of operations. In
all cases, we ignored the possibility of weather and
other such disruptions; the only constraint was the
limited (but static) capacity of the routes.

4. The Case for BDI

Our notion of modeling collaboration between
human organizations is based on our work practice
simulation approach [15]. Although modeling work
practice based on a concept of future collaboration
between people is not possible (as the work practice
has not been established), the agent-based modeling
approach we developed for modeling work practice in
organizations allows us to instantiate the concept
process flow in a realistic agent-based model. Such an
ABM enables the investigation of how people will
actually collaborate in the future process.

The main representational paradigm for BDI agents
is declarative antecedent-consequence rules, similar to
the old rule-based expert systems [16] [17]. Each BDI
agent can be seen as a knowledge-based system that
represents the reasoning capability of a particular agent.
Therefore, a multi-agent BDI simulation includes a
number of parallel-executed knowledge-based agents
that represent people performing particular roles in
organizations. We use BDI agents to model the
collaborative decision making in each phase of the
process flow. This allows us to model the
collaborative decision making at a realistic level of
people working together in an organization. This is in
contrast to the simple algorithmic agents used in [8],
[9] and [10].

The power of the BDI approach is that we can
represent how collaborative decision making can
happen in tomorrow’s organizations of airlines and
FAA. We represent the work activities of the different
roles needed to implement the CTFM concept process.

We use the Brahms multi-agent simulation
language [18] to model the concept collaborative
process flow described by Garcia-Chico et al [19].
Brahms is a tool for modeling and simulating the way
people work and collaborate, and use systems to
accomplish their tasks. Brahms agents are both BDI
agents, as well as subsumption-based reactive agents
(see Figure 1) [20]. Brahms can be used to describe
current and future work processes and practices in
human and other types of organizations. Another
application of Brahms is to design the collaborative
activities between multiple intelligent agents— both
human and software agents [21].

Figure 1. Brahms Agent Architecture

Figure 1 shows the architecture of a Brahms agent.
Each Brahms agent runs as a separate Java thread
within the discrete-event Brahms Virtual Machine. A
Brahms agent has a belief-driven inference engine that
continuously monitors the changes and/or creation of
beliefs that occur in the agent’s declarative memory.
Every belief change triggers an evaluation of possible
frame activations in the agent’s procedural memory.
The procedural memory consists of two types of
frames (i.e. rules): workframes and thoughtframes.
Thoughtframes are forward-chaining production rules
that take no simulated time to fire. Workframes, on the
other hand, are forward-chaining rules that call
activities that take simulated time. Consequently,
workframes take simulated time to execute.

With every discrete-event change in the agent’s
declarative memory, a number of workframes and/or
thoughtframes have the potential of firing. These
become part of the workframe- and thoughtframe
stacks. The thoughtframe stack uses a simple thought
frame priority schema to select the current
thoughtframes to fire in the current clock tick. In
contrast, the workframe stack has a complex conflict
resolution schema that selects the agent’s current
activity, using a workframe and activity state-transition
model.

Finally, Brahms allows for modeling the
environment and its state as facts in the World Facts
Model (WFM). Through a reactive method, agents can

detect facts in the world state, modeling an agent’s
perception. Detected facts become beliefs added to the
agent’s declarative memory. However, fact detection is
activity-context specific so that not every fact detected
by the agent. Agents, through the execution of actions
in the world can also change the state of the world by
creating or changing facts in the WFM. A more
complete explanation of how Brahms works can be in
found in [15].

5. Naïve Design

Value
Assessment

TMU
Agent

TMU
Agent

TMU
Agent

TMU
Agent

TMU
Agent

Pilot
Agent

TMU
Agent

TMU
Agent

TMU
Agent

TMU
Agent

TMU
Agent

Flight
Agent

Issue
Identification

Airspace
Model

Global
Optimization

Route
Selection

Route
Creation

TMU
Agent TMU

Agent

TMU
Agent

AOC
Agent

Brahms

Figure 2. Naïve Simulation D e s i g n . All
simulation components are implemented in the Brahms
language. Blue ovals represent agents, with stacks
abstractly representing the relative number of
instantiations. Blue 3-D boxes represent significant
reasoning modules. Green dashed ovals represent
complex state representation.

In our naïve simulation design, we implemented all
the simulation components directly in the Brahms
language (see Figure 2). Along with several minor
agents, the simulation had four main agent types:

1. Pilot Agents. As the simulation began, each pilot
agent would report for duty with their
corresponding AOC and transmit flight schedule
information (e.g., scheduled takeoff time,
destination and arrival times) to the AOC. They
would receive flight route assignments from the
AOC when such were available, and fly the aircraft
along this route at the scheduled time.

2. Flight Agents. Though not deliberative agents,
flight agents were created and given several
bookkeeping tasks, like reporting position and
calculating flight value information to the AOC.

3 . TMU Agent. The TMU agent served as the
monitor of the airspace, detecting demand-capacity
imbalances and broadcasting such information to
the AOCs. In the primary variation of the
simulation, the TMU would accept or reject flight
route requests from the AOC; in the other
simulation variations, the TMU agent would

assign routes instead of the AOCs, using either an
optimal or suboptimal strategy.

4. AOC Agents. The AOC agents are the airlines’
interface to the FAA and communicate
information such as flights, schedules, and flight
value information, as well as receive any
transmitted information from the TMU. In the
primary simulation variant, the AOCs would
select routes for their flights, re-planning whenever
those route selections were rejected by the TMU;
in the other variants the AOCs had no direct role
in route selection. In an earlier version of the
simulation, the AOCs also created the flight
routes themselves, using a heuristic search to
combine path segments into a reasonable route to
the desired destination.

In addition to these agents, we also represented
aspects of the environment (i.e. the airspace) as facts in
Brahms, necessarily, so that the agents can detect facts
in the environment and reason about them. Therefore,
physical quantities such as waypoint position and
route lengths were directly represented in the Brahms
simulation, along with incorporeal properties like
controller workload and impacted areas.

Unfortunately, it was quickly apparent that the
naïve design would not yield a usable implementation.
Though there was no explicit run time performance
requirement, an excessively slow simulation would
lead to difficulties with debugging and further
development. Even with only a partial
implementation, simulation runs were taking tens of
minutes, which was a real concern given the relatively
low level of complexity achieved.

6. Revised Design

We re-evaluated our design choices in order to address
the efficiency problems we encountered. In this
redesign, we considered two issues: what we had
chosen to simulate, and how those components could
be simulated.

6.1. Simulation Simplifications

Our focus in the initial simulation was to study the
route selection problem in collaborative and
authoritarian settings. Upon further reflection, it was
clear that the essential component was really the
advanced planning, and not the execution of the plan
itself. Correspondingly, we sought to simplify the
model by excluding portions that had real world
counterparts, but were not pertinent to our current
focus.

Route
Creation
Route
Creation

Route
Selection

TMU
Agent

TMU
Agent

TMU
Agent

TMU
Agent

TMU
Agent

Aircraft
Objects

Issue
Identification

Airspace
Model

Global
Optimization

Value
Assessment

TMU
Agent

TMU
Agent

TMU
Agent

AOC
Agent

Brahms

FACET

Figure 3. Simulation Redesign. By simplifying,
removing or redistributing simulation components, we
were able to reduce the run time of the simulation to
acceptable levels.

We removed the Brahms pilot agents, as they did
not play an integral role in the planning phase, and
changed the flight agents to passive flight objects. The
bookkeeping and flight value computations were
moved from the flight to the TMU, partially for
efficiency concerns, but also to avoid the situation
where an AOC might artificially inflate flight values to
get better treatment. Had we decided to preserve the
execution phase, we still could have eliminated our
pilot agents, as they robotically followed the
commands of the AOC and were not enriched by the
BDI representation of Brahms.

Similarly, the route creation fell outside of the
planning phase, as a prior process that creates routes as
inputs to planning. Instead of creating routes on the
fly, we structured fixed routes before the simulation
started. This meant that we only had to create the
routes once, rather than every time we ran the
simulation.

6.2. Implementation Choices

The remaining components were vital to the
simulation and could not be eliminated. However, not
all components were justified in their use of a BDI
model. We had implemented a greedy algorithm to
create a globally optimal selection of routes for flights
across all airlines. The algorithm had not been
designed to model the actual process a human would
follow to reach this globally optimal solution; it was
merely created to serve as a point of comparison. As
such, it was not necessary or even logical to
implement this function in a BDI framework; only the
resulting solution was needed. Therefore, we used

Brahms capability to interface with Java1 to implement
the algorithm.

The other major implementation change was to rely
on the simulation capabilities of FACET (see Section
2) for many of the simulated components. Through the
use of Brahms Java agents and the FACET Java API,
we were able to utilize the optimized simulation
capabilities of FACET for the airspace environment
model instead of our own implementation. However,
the agents in our simulation do reason over aspects of
the airspace; this required a representation of the salient
features in the BDI framework. Great care was taken to
only represent the airspace components that were truly
needed for agent decision making, and such
components were represented in the most abstract (i.e.,
compact) form possible. In some cases, such as the
identification of the demand-capacity imbalance, the
processing was done in FACET (and supporting Java
code) and only the outcomes were represented in the
corresponding agent’s belief model.

Our implementation of the resulting redesign was
several times faster than our partial implementation of
the naïve design. Not only did our revised
implementation include components that our initial
implementation lacked, but also did so at a higher
level of fidelity, due to our use of FACET.

7. Discussion

The inefficiencies of our initial design where
primarily caused by our overuse of the BDI paradigm
in the simulation. The choice to model both pilots and
flights as agents meant that there would be hundreds of
such agents, far more than all other agents in the
simulation combined. In Brahms, like many other
BDI-based agent languages, each agent corresponds to
a separate processing thread [22]. Each agent must
continuously monitor and process events that trigger a
reaction (e.g., detection of a relevant facts in the world
state or communication of beliefs by other agents),
slowing the process considerably (also noted
incidentally in [23])

Pilots and flight agents were not essential to our
simulation goals and were somewhat easily eliminated,
but other elements were vital (such as a model of the
airspace and optimization routines). However, we
realized that we had resorted to using the BDI
paradigm as if it were an imperative programming
language. Outside of programming convenience, we
could not justify the use of the BDI paradigm to
develop models for “non-thinking” entities such as the

1 There are two ways to interface with Java in Brahms. Both

make use of the extensive Java API: 1) Java activities are agent
actions implemented in Java, 2) Java agents are “agentified” Java
objects implemented completely in Java that other Brahms agents
can communicate beliefs with. Brahms Java agents do not have an
inference engine as shown in Figure 1.

airspace and airplanes [24]. Also, it made little sense
to model complex decision making with the BDI
framework when we were neither interested nor
informed of the actual steps of the process.

In our experience, the most effective approach for
most simulation is thus to combine BDI agents and
non-BDI components to satisfy simulation
requirements. We suggest the following guidelines to
address efficiency issues, in our order of decreasing
preference:

1. Use BDI for explicit cognitive processes. The
BDI paradigm is an excellent choice when
modeling well-understood decision making. On
the other hand, other simulation techniques are
better suited for modeling physical and likewise
processes that are not analogous to the reasoning
supported by BDI. Also, decision-making
processes whose details are not understood are not
well served by a full BDI implementation, as we
observed in our optimized route selection process.
In such cases an algorithmic approach, as opposed
to a model-based symbolic approach is often more
efficient.

2 . Scope the simulation carefully. Including
elements in the simulation that do not support
simulation goals can adversely affect the
simulation. When building a simulation, there is
a natural tendency to include whatever entities are
involved in the real world, so care must be taken
when choosing what to model. In addition, the
level of granularity for modeling processes is
important; there is no need to model the details of
a decision-making process when you are only
concerned with the outcome, rather than the
process itself. Careful scoping is a general
principle independent of efficiency. However, it is
especially important to reconsider functionality
that is causing serious performance problems.

3 . Consider the execution properties of the
language. Every BDI implementation eventually
turns into code executing on a computer, and
understanding the algorithmic properties is
sometimes necessary. In Brahms, we found that a
straightforward expression of multiple
preconditions can lead to a combinatorial
explosion in execution time; by considering how
the underlying simulation engine executed it, we
were able to create a logically equivalent form
with vastly superior performance. Similarly, as
performance degrades with the number of agents
introduced, it is sometimes beneficial to combine
processes from multiple agents into a single agent
(see Figure 4). However, since these techniques
generally decrease readability and correspondence
with the real world, we recommend using them
only as a last resort.

0

2000

4000

6000

8000

10000

12000

14000

1

1
0

1
0
0

2
0
0

5
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

Number of Flights

R
u

n
ti

m
e
(S

e
co

n
d

s)
Central
Distributed

Figure 4. F l ight Value Computat ion
Efficiency. Using distributed agents to calculate
flight value resulted in an exponential increase in
computational time as the number of flights increased.
The same operation, calculated centrally, had superior
performance characteristics.

8. Future Work

Efficiency is likely to remain a concern as we
expand the simulation to more accurately reflect the
proposed CTFM concept. Consider the fact that to
simulate the entire NAS the simulation needs to deal
with more than 50,000 flights per day, 26 TMUs
organizations and tens of AOCs. We believe that the
guidelines presented in this paper will help us avoid
many of the potential efficiency problems we might
otherwise encounter. Specifically, we plan to expand
our simulation in several ways:
1 . Expand simulation scope. Our initial

simulation efforts focused entirely on the TFM
planning phase, but the complete CTFM concept
covers several phases that influence each other. As
we shift to this multiphase model, the dynamism
in the airspace environment will play a vital role.
Fortunately, by integrating FACET into our
simulation, we will be able to make use of a
highly optimized airspace simulator. Our design
challenge changes from creating an airspace
simulator to deciding how to efficiently transmit
information between the two simulations. Most
likely, careful scoping will be necessary.

2. Increase decision making fidelity. Initially, we
have only modeled simple decision-making
processes in our simulation. In reality, the
decision-making processes followed by the
corresponding real life entities are neither simple,
well understood nor publicly available. Accurate
modeling of decision making is necessary for
overall simulation fidelity and remains a

challenge. One possibility is to use historical data
and learning techniques to induce a model. In any
case, since we are neither likely to learn the
detailed steps of such decision making, nor are we
interested in validating that process, we will
model such processes at a large-grained level
without using BDI internally to arrive at the
resulting decision.

3. Increase simulation size. TFM issues range from
those local to a sector or airport to ones that are
truly national in scope. Even at the local level a
major airport will have hundreds of flights from
tens of different carriers. To date, our simulations
have included only a handful of agents (as
measured in our redesign), but we must scale up
to a much larger number to simulate other types
of TFM issues. There is a “breaking point” in
every simulation were it is no longer feasible to
increase the size of the simulation. This point
may come earlier in BDI systems that use a
sophisticated level of processing for each agent.
One possibility, supported by Brahms, is to
distribute the simulation amongst several
computers, though this introduces new issues of
complexity and limited hardware. In the end,
though, it may not be feasible to create a full-
sized simulation of CTFM involving thousands
of BDI agents using existing simulation packages
such as Brahms.

4. Modeling of Organizations. We will increase the
fidelity of the simulation of the human decision
making by modeling the roles and role interaction
in the different organizations, both for TMUs and
AOCs.

5 . Systematic Performance Investigation. A
thorough empirical study of the performance
characteristics of the different design choices
would yield quantitative results that may inform
future design decisions. Specifically, we intend to
run a series of experiments that compare the run
time properties of different options. One possible
experiment is to contrast the efficiency of a
complex algorithm implemented in a BDI
framework and the same algorithm implemented
in a procedural language (such as Java).

9. Acknowledgements

The authors would like the NGATS ATM-Airspace
project for their support of this work, as well as
Francis Enomoto, Dr. Karl Bilimoria and Bart-Jan van
Putten for their contributions to the work and
comments.

10. References

1. Federal Aviation Administration, FAA Long-
Range Aerospace Forecasts Fiscal Years 2015,
2020 And 2025. 2000.

2. Idris, H., et al. Field Observations o f
Interactions Between Traffic Flow Management
and Airline Operations. in AIAA 6th Aviation,
Technology, Integration, and Operations
Conference (ATIO). 2006. Wichita, Kansas.

3. Idris, H., et al. Operational Concept for
Collaborative Traffic Flow Management based
on Field Observations. in AIAA 5th Aviation,
Technology, Integration, and Operations
Conference (ATIO). 2005. Arlington, Virginia.

4. Yilmaz, L., T. Ören, and A. Nasser-Ghasem,
Agents, Simulation, and Gaming. Simulation
and Gaming Journal, 2006. 37(3): p. 339-349.

5. Sweet, D.N., et al. Fast-Time Simulation System
for Analysis of Advanced Air Transportation
Concepts. in AIAA Modeling and Simulation
Technologies Conference and Exhibit. 2002.
Monterey, California.

6. Couluris, G.J., et al. National Airspace System
Simulation Capturing the Interactions of Air
Traffic Management and Flight Trajectories. in
AIAA Guidance, Navigation, and Control (GNC)
Conference. 2003. Austin, Texas.

7. Corker, K.M., Human Performance Simulation in
the Analysis of Advanced Air Traffic
M a n a g e m e n t , in I999 Winter Simulation
Conference, P.A. Farrington, et al., Editors. 1999.

8. Keith C, C., et al., Modeling Distributed Human
Decision-Making in Traffic Flow Management
Operat ions , in 3rd USA/Europe Air Traffic
Management R&D Seminar. 2000: Napoli, Italy.

9. Tumer, K. and A. Agogino, Distributed Agent-
Based Air Traffic Flow Management, in AAMAS
2007. 2007: Honolulu, Hawaii. p. 330-337.

10. Hogan, B. and L.A. Wojcik, Traffic Flow
Management Modeling and Operational
C o m p l e x i t y , in 2004 Winter Simulation
Conference, R.G. Ingalls, et al., Editors. 2004.

11. Bilimoria, K., et al. FACET: Future ATM
Concepts Evaluation Tool. in 3rd USA/Europe
ATM 2001 R&D Seminar. 2000. Napoli, Italy.

12. Smith, P., et al., The design of FACET to support
use by airline operations centers. 2004, IEEE.

13. Flight Explorer , Flight Explorer Inc.:
http://www.flightexplorer.com/ .

14. Wolfe, S.R., et al. Comparing Route Selection
Strategies in Collaborative Traffic Flow
Management. in Intelligent Agent Technology
(IAT 2007). 2007. Fremont, CA, USA: IEEE press.

15. Sierhuis, M., W.J. Clancey, and R.v. Hoof,
Brahms: A multiagent modeling environment for
simulating work processes and practices.
International Journal of Simulation and Process

Modelling, Inderscience Publishers, 2007. 3(3):
p. 134-152.

16. Clancey, W.J. The advantages of abstract
control knowledge in expert system design. in
AAAI-83. 1983.

17. Clancey, W.J., Heuristic Classif ication.
Artificial Intelligence, 1985(27): p. 289-350.

18. Clancey, W.J., et al., Brahms: Simulating
practice for work systems design. International
Journal on Human-Computer Studies, 1998. 49:
p. 831-865.

19. Garcia-Chico, J.-L., et al., Collaboration for
Mitigating Local Traffic Flow Management
(TFM) Constraints due to Weather, Special Use
Airspace (SUA), Complexity, and Arrival
Meter ing: Prototype Algori thms for
Collaborative TFM. 2007, L-3 Communications
and Metron Aviation: Billerica, MA

20. Sierhuis, M., “It’s not just goals all the way
down” – “It’s activities all the way down” in
LNAI 4457: Engineering Societies in the Agents
World, Seventh International Workshop
(ESAW'06) . 2007, Springer-Verlag: Dublin,
Ireland. p. 1-24.

21. Sierhuis, M., Modeling and Simulating Work
Practice; Brahms: A multiagent modeling and
simulation language for work system analysis
and design, in Social Science Informatics (SWI).
2001, University of Amsterdam, SIKS
Dissertation Series No. 2001-10: Amsterdam,
The Netherlands. p. 350.

22. Bordini, R.H., et al., eds. Multi-Agent
Programming: Languages, Platforms and
Applications . Multiagent Systems, Artificial
Societies, and Simulated Organizations, ed. G.
Weiss. 2005, Springer Science+Business Media,
Inc.: New York, NY.

23. Thangarajah, J., L. Padgham, and J. Harland,
Representation and reasoning for goals in BDI
a g e n t s , in Australasian conference on
Computer science. 2002, Australian Computer
Society, Inc: Melbourne, Australia.

24. Wooldridge, M.J. and N.R. Jennings, SOFTWARE
ENGINEERING WITH AGENTS: Pitfalls and
Pratfalls. IEEE Internet Computing, 1999. 3(3):
p. 20-27.

